
October 24th 2020 — Quantstamp Verified

Axie Infinity
This security assessment was prepared by Quantstamp, the leader in blockchain security

Executive Summary

Type Token Contract

Auditors Fayçal Lalidji, Security Auditor
Joseph Xu, Technical R&D Advisor
Luís Fernando Schultz Xavier da Silveira, Security
Consultant

Timeline 2020-09-28 through 2020-09-30

EVM Muir Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification None

Documentation Quality Low

Test Quality Low

Source Code
Repository Commit

axs-smart-contracts 5df14c0

Goals Is there any centralization of power?•

Does the code conform to ERC20?•

Can an attacker steal users' funds?•

Total Issues 5 (4 Resolved)

High Risk Issues 0 (0 Resolved)

Medium Risk Issues 0 (0 Resolved)

Low Risk Issues 0 (0 Resolved)

Informational Risk Issues 5 (4 Resolved)

Undetermined Risk Issues 0 (0 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to catastrophic
impact for client’s reputation or serious
financial implications for client and
users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice (e.g.,
gas analysis, deployment settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/axieinfinity/axs-smart-contracts
https://github.com/axieinfinity/axs-smart-contracts/commit/5df14c0c511073342fb2f5166851758f1127ef1b

Summary of Findings

The implementation of the AXS token does not rely on external reference implementation, this makes the implementation simple. However, cloning the libraries contradicts best practices for
the smart contract development. As any ERC20 token, it is vulnerable to allowance double-spend exploit.

ID Description Severity Status

QSP-1 Possible Transfer to Contract Address Informational Fixed

QSP-2 Allowance Double-Spend Exploit Informational Mitigated

QSP-3 Unlocked Pragma Informational Fixed

QSP-4 Clone-and-Own Informational Acknowledged

QSP-5 Input Validation Informational Fixed

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.6.6• Slither

v0.2.7• Mythril

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither .

3. Installed the Mythril tool from Pypi: pip3 install mythril

4. Ran the Mythril tool on each contract: myth -x path/to/contract

https://github.com/crytic/slither
https://github.com/ConsenSys/mythril

Findings

QSP-1 Possible Transfer to Contract Address

Severity: Informational

FixedStatus:

File(s) affected: ERC20

It is rarely desirable for tokens to be sent to the contract itself. However, these mistakes are often made due to human errors. Hence, it's often a good idea to prevent these mistakes
from happening within the smart contract itself.
Description:

Add a requirement that prevents the destination address to be equal to .Recommendation: address(this)

QSP-2 Allowance Double-Spend Exploit

Severity: Informational

MitigatedStatus:

File(s) affected: ERC20

As it presently is constructed, the contract is vulnerable to the , as with other ERC20 tokens.Description: allowance double-spend exploit

An example of an exploit goes as follows:Exploit Scenario:

1. Alice allows Bob to transfer amount of Alice's tokens () by calling the method on smart contract (passing Bob's address and as method
arguments)

N N>0 approve() Token N

2. After some time, Alice decides to change from to () the number of Alice's tokens Bob is allowed to transfer, so she calls the method again, this time
passing Bob's address and as method arguments

N M M>0 approve()
M

3. Bob notices Alice's second transaction before it was mined and quickly sends another transaction that calls the method to transfer Alice's tokens
somewhere

transferFrom() N

4. If Bob's transaction will be executed before Alice's transaction, then Bob will successfully transfer Alice's tokens and will gain an ability to transfer another tokensN M

5. Before Alice notices any irregularities, Bob calls method again, this time to transfer Alice's tokens.transferFrom() M

The exploit (as described above) is mitigated through use of functions that increase/decrease the allowance relative to its current value, such as and
.

Recommendation: increaseAllowance
decreaseAllowance
Pending community agreement on an ERC standard that would protect against this exploit, we recommend that developers of applications dependent on /
should keep in mind that they have to set allowance to 0 first and verify if it was used before setting the new value. Teams who decide to wait for such a standard should make these
recommendations to app developers who work with their token contract.

approve() transferFrom()

QSP-3 Unlocked Pragma

Severity: Informational

FixedStatus:

File(s) affected: Several Contracts

Every Solidity file specifies in the header a version number of the format . The caret () before the version number implies an unlocked pragma,
meaning that the compiler will use the specified version , hence the term "unlocked."
Description: pragma solidity (^)0.5.* ^

and above

For consistency and to prevent unexpected behavior in the future, it is recommended to remove the caret to lock the file onto a specific Solidity version.Recommendation:

QSP-4 Clone-and-Own

Severity: Informational

AcknowledgedStatus:

File(s) affected: ERC20, SafeMath

The clone-and-own approach involves copying and adjusting open source code at one's own discretion. From the development perspective, it is initially beneficial as it reduces the
amount of effort. However, from the security perspective, it involves some risks as the code may not follow the best practices, may contain a security vulnerability, or may include intentionally or
unintentionally modified upstream libraries.

Description:

Rather than the clone-and-own approach, a good industry practice is to use the Truffle framework for managing library dependencies. This eliminates the clone-and-own
risks yet allows for following best practices, such as, using libraries.
Recommendation:

QSP-5 Input Validation

Severity: Informational

FixedStatus:

File(s) affected: ERC20

Due to human errors, function inputs are prone to mistakes. Edge cases should be checked carefully, for example in and functions and
parameters are not checked to be different than zero address. Even if the input validation is not mandatory, throwing a transaction with a correct revert message helps the users to get a correct
feedback.

Description: transferFrom approve _from _spender

Add all the necessary requirements with the correct revert messages.Recommendation:

Automated Analyses

Slither

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/b4f87bb8fc25fb07f73099701e39e167a3d36465/contracts/token/ERC20/ERC20.sol#L71-L78

The analysis was completed successfully. No issues were detected.

Mythril

The analysis was completed successfully. No issues were detected.

Code Documentation

The code does not contain documentation. Quantstamp strongly recommends adding comments to describe the implemented logic.

Adherence to Best Practices

Add messages to statements to indicate why the function call failed in and .• require SafeMath ERC20

When the is updated in the event is not emitted. This is not required but may be used by Dapps to track allowances.• allowance ERC20.transferFrom Approval

In functions , and , is defined as the return value but it is not set in the functions implementation, instead
is directly used. A similarly practice can be found in functions , and . It is not mandatory to specify a variable name when a

function requires a return value, instead just use the return type.

• ERC20 approve transfer transferFrom bool _success
return true SafeMath sub div mod

Test Results

Test Suite Results

Contract: AXS contract
✓ transfer (205ms)

1 passing (2s)

Code Coverage

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 100 100 100 100

AXS.sol 100 100 100 100

contracts/math/ 58.33 33.33 60 58.33

SafeMath.sol 58.33 33.33 60 58.33 17,27,28,33,34

contracts/token/erc20/ 47.06 25 50 47.06

ERC20.sol 35.71 25 33.33 35.71 … 31,32,33,34

ERC20Detailed.sol 100 100 100 100

IERC20.sol 100 100 100 100

IERC20Detailed.sol 100 100 100 100

All files 56.25 31.25 60 56.25

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

207aa399088c896e7c0a2c8ba659a6d2240fa2427a91dd702ea8870f2aa86360 ./AXS.sol

a2ae752d26af9c63e6a4c23af318d7e14425b274393a57eb02e67cdb2370ce4c ./token/erc20/IERC20Detailed.sol

6bcf321dce20d1097024e332967bbed8fbe72f882a2e4d6ebd1835601dc9743e ./token/erc20/ERC20Detailed.sol

d63f075de2289a54827a6ae3f52e4421b651114757b5bb7fc45a6e47e6abe74c ./token/erc20/IERC20.sol

0beed269b9ccceb73db5b9fda18761081569dbd5da71db5b221f3e179b110d5a ./token/erc20/ERC20.sol

Tests

b52fed990b45e64f01b2e7b08dc6a000d1405eb5c2456db23c33cf4e66a00af6 ./test/TokenVesting_test.ts

Changelog

2020-09-28 - Initial report•

2020-10-13 - Report update•

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Axie Infinity Audit

