
Security Assessment

Axie Infinity - Audit
Jun 21st, 2022

Table of Contents

Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Review Notes
Overview

External Dependencies

Privileged Roles

Project Goals

Findings
GLOBAL-01 : Centralization Related Risks

GLOBAL-02 : External dependencies

GLOBAL-03 : No storage gap in Logical contracts

GLOBAL-04 : No delay in Governance tasks

GLOBAL-05 : Unlocked Pragma

CKP-01 : Potential Lack of Liquidity

CKP-02 : `_minimumVoteWeight()` can be set to a low value

CKP-03 : Incompatibility With Deflationary Tokens

GAC-01 : Relayers can execute any proposal in a certain condition

GAC-02 : No check that address is an actual contract

GCK-01 : Inconsistency With Comments

MGV-01 : Validators could be too powerful

MGV-02 : Using of Default Value

TCK-01 : Potential re-entrancy on `handleAssetTransfer()`

TCK-02 : Completion of if-else Branch

TUP-01 : Design violation

WLC-01 : Inappropriate Upper Limits for Fees

WLK-01 : Questions about Tiers model

Optimizations
BMC-01 : Variables That Could Be Declared as Immutable

Appendix

Axie Infinity - Audit Security Assessment

Disclaimer

About

Axie Infinity - Audit Security Assessment

Summary

This report has been prepared for Ronin Network to discover issues and vulnerabilities in the source code

of the Axie Infinity - Audit project as well as any contract dependencies that were not part of an officially

recognized library. A comprehensive examination has been performed, utilizing Static Analysis and Manual

Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by

industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

Axie Infinity - Audit Security Assessment

Overview

Project Summary

Project Name Axie Infinity - Audit

Platform Ethereum

Language Solidity

Codebase https://github.com/axieinfinity/ronin-smart-contracts-v2

Commit
abe18fe7c333657297fa29409025dbb54852d204

90dad8afb431c6dc4f3d1a6aaffd0f12f72c825c

Audit Summary

Delivery Date Jun 21, 2022 UTC

Audit Methodology Static Analysis, Manual Review

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Mitigated Partially Resolved Resolved

Critical 0 0 0 0 0 0 0

Major 2 0 0 2 0 0 0

Medium 5 0 0 2 0 2 1

Minor 4 0 0 2 0 1 1

Optimization 1 0 0 0 0 0 1

Informational 7 0 0 5 0 0 2

Discussion 0 0 0 0 0 0 0

Axie Infinity - Audit Security Assessment

https://github.com/axieinfinity/ronin-smart-contracts-v2

Audit Scope

ID File SHA256 Checksum

GAC common/GovernanceAdmin.sol
bf659cbce26ad6bb67096eef08ce52e88f81d3bc37e20e962c68a0030

7f99ed1

RVC common/RoninValidator.sol
4e01a0c67b012ab2a2a188eaca29b4ad9564fa1ff47fd0d9ce5d57d6b

506822b

GGC
extensions/governance/GatewayGovernance.s

ol

32ca3070eeea8c5a8605e74340567f231c44cc207b79cee4b3c3ab42

79fdec3b

GPG
extensions/governance/GlobalProposalGovern

ance.sol

db88232a64d418b8815068cd2225cbe1a427c8209c4e0c23b5d71b3

e86914c0a

GCK extensions/governance/Governance.sol
018503aeb6f544f81cbe17f5411212891999eea5771ced2934f79ff749

96125b

PGC
extensions/governance/ProposalGovernance.s

ol

12bd0a2c0214a6018b4354f8843b92b05891e0c44c6260c450edfd76

b02ce0e8

GVC extensions/GatewayV2.sol
ad15c1d1e9af2d7d44fd3f79a2490201bf0fca4bb5e574a762553ec3a9

64cb6b

HPA extensions/HasProxyAdmin.sol
24aef138712d0d2f8d18da3ac5fd2b873d10ce60eb845ffdcb0768fb7b

452580

MWC extensions/MinimumWithdrawal.sol
cb70c81c0e18125d236bf4a31352f7092abaa5b47d5f46e22c25f52bd

1593fc8

TUP
extensions/TransparentUpgradeableProxyV2.s

ol

56f02515eac98350739f670a0a9a28f3974431d198f55db0bc637cb79

3a0c127

WLC extensions/WithdrawalLimitation.sol
67c340d0b6f6ba83c2a5f320884674d6a3e0bb4eeaf4029310d1fe385

83aece6

IER interfaces/IERC20Mintable.sol
4795937cb211a75c6c525b06508e7f57d73e7bbc24d6b4e36cb3d26b

2c19aea5

IEC interfaces/IERC721Mintable.sol
a93c33101084deef5fca264a4dff73f05cce8ca33519648d2128596b62

946214

IQC interfaces/IQuorum.sol
5e12f2f1134550dfe70bc1f2503ff11fb9181c6b874f29bc262393e01c5

daa12

IWE interfaces/IWETH.sol
688a73efabe2972c17647f4daba15e1e55d59aa9a5d267cf7c1f2aca2

6dddfda

Axie Infinity - Audit Security Assessment

ID File SHA256 Checksum

IWV interfaces/IWeightedValidator.sol
a6553f833882c27e2c71ac1e3925185c891eefc3b458de947f89eabdf

054aa3f

MTC interfaces/MappedTokenConsumer.sol
1beb2fdc968753fce0e0878b230bbc2db818c71d3b99cd56b4224f8ef

2f5f4f3

SCC interfaces/SignatureConsumer.sol
f9f8a78e55b9de1c5627e5be695e004c7bc29a3e387358e5a25d4305

50791052

BCK library/Ballot.sol
ebaac64bd83794d8051c5e3067c04320a24055e14dd5454a17dba7c

b117ad23b

GPC library/GlobalProposal.sol
40e1dc63905c17c856174961a9c433915aebf8cae41eb1b2491b3be2

ca27d980

PCK library/Proposal.sol
20983d4eb425c6a75f50df57faa2f48cd7c253c7960d7a271db5048cf2

87e228

TCK library/Token.sol
18c9118afe457001db1288016bf862af194bd44b27be0babe0a6bb01

e82b6704

TCP library/Transfer.sol
86ba568b7e2d0c28b57e319423db1291fa5409a0408e755978f78fd6

ebdceb53

IMG mainchain/IMainchainGatewayV2.sol
41e04dbcfd5032a3d4db1f71c12b3360d03ba94dc0400eae4df3b2d55

196cbe9

MGV mainchain/MainchainGatewayV2.sol
ca514918cfa5cf5170476610685d349c8b93fdadba51d9ec9133456cd

02642ef

BMC migration/BridgeMigration.sol
0dd7da666b3242839f0d53d4ec143bac7531669bd3920ed64842555

4f9be792f

MER mocks/MockERC721.sol
8ab73c3fe72a92f2bdd016f3a5c51de87db04e0da7d8fd82391bc1a26

28654d2

MGC mocks/MockGatewayV2.sol
49f5985faaab611c67c0e5e40231ba3dcbb8604191c5ea93499e2d06

4a20d44e

IRG ronin/IRoninGatewayV2.sol
6e1474b6b1084326bc85cd028679e95b408db36a1199cf3766451d42

8807d371

RGV ronin/RoninGatewayV2.sol
c73070b6c018fd92167b02b2b4c38c7226b13c1d9469ecfb88e43ef01

e00f05b

WLK extensions/WithdrawalLimitation.sol
78f9a9a781cd296df0cf163d4b38209c8dec8418a3ecb25d72a7b3241

3d5762c

MGK mainchain/MainchainGatewayV2.sol
0c1e636e34db47fe49758878680cd974292b0c65bf1493c8dbdd67d8

113b49e1

Axie Infinity - Audit Security Assessment

Review Notes

Overview

Ronin Network has created a set of contracts that allow bridging assets and governance proposals between

Ronin Network and other EVM blockchains.

External Dependencies

The scope of the audit treats third-party entities as black boxes and assumes their functional correctness.

However, in the real world, third parties can be compromised and this may lead to lost or stolen assets.

Ronin Network relies on :

A Frontend server : So users can ask for the bridge of their assets;

Bridge relayers : Servers to relay proposals on other chains;

Ronin Validators : Who also validate deposits and withdrawals;

Potentially, some other servers : Who listen events, and trigger actions upon event reception;

Ronin Ethereum Sidechain ecosystem.

Those elements are critical to Ronin Bridge's functioning and security, and need to be audited.

Some other smart contracts dependancies exist:

ECDSA , AccessControlEnumerable , IQuorum , IWeightedValidator for the GovernanceAdmin

contract;

Initializable , Strings , StorageSlot for the RoninValidator contract;

Strings for the GatewayGovernance contract;

Strings , SignatureConsumer for the Governance contract;

Pausable , IQuorum , IWeightedValidator for the GatewayV2 contract;

StorageSlot for the HasProxyAdmin contract;

TransparentUpgradeableProxy for the TransparentUpgradeableProxyV2 contract;

ECDSA for the GlobalProposal contract;

Address for the Proposal contract;

IERC20 , IERC721 , Strings , IWETH for the Token contract;

ECDSA , IERC20 , Strings for the Transfer contract;

AccessControlEnumerable , Initializable for the MainchainGatewayV2 contract;

Ownable , IERC20 for the BridgeMigration contract;

AccessControlEnumerable , Initializable , IERC20Mintable , IERC721Mintable for the

RoninGatewayV2 contract.

Axie Infinity - Audit Security Assessment

We assume these vulnerable actors and implement proper logic to collaborate with the current project.

Privileged Roles

The following roles are adopted to enforce the access control:

Role _owner is adopted to update configurations of the contract BridgeMigration ,

Role RELAYER_ROLE is adopted to update configurations of the contract GovernanceAdmin ,

Role DEFAULT_ADMIN_ROLE is adopted to update configurations of the contract GovernanceAdmin ,

Role onlyGovernor is adopted to update configurations of the contract GovernanceAdmin ,

Role onlySelfCall is adopted to update configurations of the contract GovernanceAdmin ,

Role onlyAdmin is adopted to update configurations of the contract RoninValidator ,

Role onlyAdmin is adopted to update configurations of the contract GatewayV2 ,

Role onlyAdmin is adopted to update configurations of the contract MinimumWithdrawal ,

Role ifAdmin is adopted to update configurations of the contract TransparentUpgradeableProxyV2 ,

Role onlyAdmin is adopted to update configurations of the contract WithdrawalLimitation ,

Role onlyAdmin is adopted to update configurations of the contract MainchainGatewayV2 ,

Role WITHDRAWAL_UNLOCKER_ROLE is adopted to update configurations of the contract

MainchainGatewayV2 ,

Role onlyAdmin is adopted to update configurations of the contract MainchainGatewayV2 ,

Role WITHDRAWAL_MIGRATOR is adopted to update configurations of the contract RoninGatewayV2 .

To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to

the community. Any plan to invoke the aforementioned functions should be also considered to move to the

execution queue of Timelock contract.

Project Goals

The engagement was scoped to provide a security assessment of the Ronin Network bridge. Specifically,

we sought to verify the following non-exhaustive list of potential attack vectors:

C6.1: Verify that bridge requires all necessary values to be included in the message and signed:

chain ids, receiver, amount, nonce.

C6.2: Verify that used signatures are invalidated to protect bridge from replay attacks.

C6.3: Verify that message hash generation algorithm is resistant to collision attacks.

C6.4: Verify that bridge includes source and destination chains identifiers in the signed message and

correctly verifies them.

C6.5: Verify that bridge does not allow spoofing chain identifiers.

Axie Infinity - Audit Security Assessment

C6.6: Verify that bridge uses a nonce parameter to allow the same operation (the same sender,

receiver and amount) to be executed multiple times.

C6.7: Verify signed message cannot be used in a different context (use domain separator from EIP-

712).

Axie Infinity - Audit Security Assessment

Findings

ID Title Category Severity Status

GLOBAL-01 Centralization Related Risks
Centralization /

Privilege
Major Acknowledged

GLOBAL-02 External Dependencies Logical Issue Medium Acknowledged

GLOBAL-03 No Storage Gap In Logical Contracts Logical Issue Medium Partially Resolved

GLOBAL-04 No Delay In Governance Tasks Logical Issue Major Acknowledged

GLOBAL-05 Unlocked Pragma Language Specific Informational Acknowledged

CKP-01 Potential Lack Of Liquidity Logical Issue Medium Partially Resolved

CKP-02
_minimumVoteWeight() Can Be Set

To A Low Value
Logical Issue Minor Partially Resolved

CKP-03 Incompatibility With Deflationary Tokens Volatile Code Minor Acknowledged

GAC-01
Relayers Can Execute Any Proposal In

A Certain Condition
Logical Issue Medium Resolved

GAC-02
No Check That Address Is An Actual

Contract
Logical Issue Minor Resolved

GCK-01 Inconsistency With Comments Logical Issue Informational Resolved

MGV-01 Validators Could Be Too Powerful Logical Issue Medium Acknowledged

MGV-02 Using Of Default Value Logical Issue Informational Acknowledged

Axie Infinity - Audit Security Assessment

18
Total Issues

Critical 0 (0.00%)

Major 2 (11.11%)

Medium 5 (27.78%)

Minor 4 (22.22%)

Informational 7 (38.89%)

Discussion 0 (0.00%)

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654237173635
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654258448034
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654668180562
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655733211550
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655730224013
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655100893781
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654519764804
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655645494672
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655468848333
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654256448167
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655817730267
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655688809780
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655696587545

ID Title Category Severity Status

TCK-01
Potential Re-entrancy On

handleAssetTransfer()
Logical Issue Informational Acknowledged

TCK-02 Completion Of If-else Branch Volatile Code Informational Resolved

TUP-01 Design Violation Inconsistency Informational Acknowledged

WLC-01 Inappropriate Upper Limits For Fees Logical Issue Minor Acknowledged

WLK-01 Questions About Tiers Model Inconsistency Informational Acknowledged

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654256775362
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655692771768
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654255285861
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655651482301
https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654237868011

GLOBAL-01 | Centralization Related Risks

Category Severity Location Status

Centralization / Privilege Major Acknowledged

Description

In the contract BridgeMigration the role _owner has authority over the functions shown in the diagram

below. Any compromise to the _owner account may allow the hacker to take advantage of this authority and

call the migrateAndTransfer() function to steal funds.

Authenticated Role

Function

Function

Function Function Calls

Function

_owner

changePausableAdmin

pauseGateway

migrateAndTransfer

unpauseGateway

IERC20

In the contract GovernanceAdmin the role RELAYER_ROLE has authority over the functions below:

relayProposal() : Relay a proposal and votes on another chain;

relayGlobalProposal() : Relay a "Global" proposal and votes on another chain.

Any compromise to the RELAYER_ROLE account may allow the hacker to take advantage of this authority and

attempt to relay false proposals on the impacted chain.

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654237173635

In the contract GovernanceAdmin the role DEFAULT_ADMIN_ROLE has a high level of authority over the

contract and can add/modify roles (variable _roleSetter)

Any compromise to the DEFAULT_ADMIN_ROLE account may allow the hacker to take advantage of this

authority and take over important roles of the contract.

In the contract GovernanceAdmin the role onlyGovernor has authority over the functions below:

propose() : Propose a Proposal;

proposeGlobal() : Propose a "Global" Proposal;

proposeProposalStructAndCastVotes() : Propose a Proposal and cast votes;

proposeGlobalProposalStructAndCastVotes() : Propose a "Global" Proposal and cast votes.

Any compromise to the onlyGovernor account may allow the hacker to take advantage of this authority and

create fake proposals. The attacker would however need the votes from the validator.

In the contract GovernanceAdmin the role onlySelfCall has authority over the functions below:

changeProxyAdmin() : Change the administrator of the proxy contract;

setValidatorContract() : Change the address of the Validator contract;

setGatewayContract() : Change the address of the Gateway contract.

This access control is particular, since it corresponds to the contract calling itself. If an attacker can create

proposals and cast them, he could potentially trigger the functions above and take control over the whole

contract, since he could modify the ProxyAdmin , the Validator contract, and the Gateway contract.

In the contract RoninValidator the role onlyAdmin has authority over the functions below:

addValidators() : Add Ronin validators;

updateValidators() : Update Ronin validators;

removeValidators() : Remove Ronin validators;

setThreshold() : Configure num/denum threshold.

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and

add his own validators, which could later be used to attempt to vote on proposals.

In the contract GatewayV2 the role onlyAdmin has authority over the functions below:

setThreshold() : Configure num/denum threshold;

pause()/unpause() : Pause/Unpause the contract;

setValidatorContract() : Change the address of the Validator contract.

Axie Infinity - Audit Security Assessment

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and

add his own validators (by modifying the Validator contract), which could later be used to attempt to vote

on proposals.

In the contract MinimumWithdrawal the role onlyAdmin has authority over the functions below:

setMinimumThresholds() : Sets the minimum thresholds to withdraw.

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and

increase the minimum threshold to withdraw to bypass current limitations.

In the contract TransparentUpgradeableProxyV2 the role ifAdmin has authority over the functions below:

functionDelegateCall() : Proxy admin can call contract implementation.

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and

attack the implementation contract with the role of the proxy Administrator.

In the contract WithdrawalLimitation the role onlyAdmin has authority over the functions below:

setFullSigsThresholds() : Sets the thresholds for withdrawals that requires all validator signatures;

setLockedThresholds() : Sets the amount thresholds to lock withdrawal;

setUnlockFeePercentages() : Sets fee percentages to unlock withdrawal;

setDailyWithdrawalLimits() : Sets daily limit amounts for the withdrawals.

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and

modify withdrawals configurations.

In the contract MainchainGatewayV2 the role onlyAdmin has authority over the functions below:

setWrappedNativeTokenContract() : Modify the wrappedNativeToken state variable;

mapTokens() : Maps current chain assets with Ronin assets;

mapTokensAndThresholds() : Maps current chain assets with Ronin assets, and perform

setFullSigsThresholds() , setLockedThresholds() , setUnlockFeePercentages() ,

setDailyWithdrawalLimits() .

Axie Infinity - Audit Security Assessment

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and

cause a Denial Of Service by modifying the wrapped token or the tokens mappings.

In the contract MainchainGatewayV2 the role WITHDRAWAL_UNLOCKER_ROLE has authority over the functions

below:

unlockWithdrawal() : Unlock withdrawals.

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and

steal tokens by calling this function.

In the contract MainchainGatewayV2 the role onlyAdmin has authority over the functions below:

mapTokens() : Maps Ronin assets with other chain's assets.

Any compromise to the onlyAdmin account may allow the hacker to take advantage of this authority and

cause a Denial Of Service by modifying the tokens mappings.

In the contract RoninGatewayV2 the role WITHDRAWAL_MIGRATOR has authority over the functions below:

migrateWithdrawals() : Migrate withdrawals;

Any compromise to the WITHDRAWAL_MIGRATOR account may allow the hacker to take advantage of this

authority and steal tokens by calling this function.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would also

mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Axie Infinity - Audit Security Assessment

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the

public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Ronin]:

The BridgeMigration is used only once to migrate the existing token in the old gateway to the new

gateway (on Ethereum). Firstly we will deploy it then we ask the validators to provide us the necessary

signatures to move the fund.

The RELAYER_ROLE in GovernanceAdmin can only relay proposal with enough governance signatures, so we

think the risk is small.

Axie Infinity - Audit Security Assessment

GLOBAL-02 | External Dependencies

Category Severity Location Status

Logical Issue Medium Acknowledged

Description

The Ronin bridge relies on external parties to function correctly.

For instance, for the bridge to work, some servers must exist, that will be in charge of capturing events, and

triggering actions associated with private keys (cf Bridge Workers/Relayers).

In particular, Ronin Network relies on :

A Frontend server : So users can ask for the bridge of their assets;

Bridge relayers : Servers to relay proposals on other chains;

Ronin Validators : Who also validate deposits and withdrawals;

Potentially, some other servers : Who listen events, and trigger actions upon event reception;

Ronin Ethereum Sidechain ecosystem.

Those elements are critical to Ronin Bridge's functioning and security, and need to be audited.

Some other smart contracts dependancies exist:

ECDSA , AccessControlEnumerable , IQuorum , IWeightedValidator for the GovernanceAdmin

contract;

Initializable , Strings , StorageSlot for the RoninValidator contract;

Strings for the GatewayGovernance contract;

Strings , SignatureConsumer for the Governance contract;

Pausable , IQuorum , IWeightedValidator for the GatewayV2 contract;

StorageSlot for the HasProxyAdmin contract;

TransparentUpgradeableProxy for the TransparentUpgradeableProxyV2 contract;

ECDSA for the GlobalProposal contract;

Address for the Proposal contract;

IERC20 , IERC721 , Strings , IWETH for the Token contract;

ECDSA , IERC20 , Strings for the Transfer contract;

AccessControlEnumerable , Initializable for the MainchainGatewayV2 contract;

Ownable , IERC20 for the BridgeMigration contract;

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654258448034

AccessControlEnumerable , Initializable , IERC20Mintable , IERC721Mintable for the

RoninGatewayV2 contract.

The above contract dependencies are considered secure in the context of the current audit.

Recommendation

It is recommended to audit third-party dependencies.

For the servers exposed on the Internet, it is recommended to perform a pentest :

In Black box mode, to identify vulnerabilities that can be seen by an external attacker;

In Gray box mode, to identify what a malicious user could do.

Alleviation

[Ronin]:

The team acknowledged this issue and decided not to change the current codebase.

Axie Infinity - Audit Security Assessment

GLOBAL-03 | No Storage Gap In Logical Contracts

Category Severity Location Status

Logical Issue Medium Partially Resolved

Description

Ronin has implemented proxyfiable contracts. Those contracts inherit from the following contracts

(Interfaces are not mentionned) :

RoninValidator : Inherits from Initializable , HasProxyAdmin .

RoninGatewayV2 : Inherits from GatewayV2 , GatewayGovernance , Initializable ,

MinimumWithdrawal , AccessControlEnumerable ;

MainchainGatewayV2 : Inherits from WithdrawalLimitation , Initializable ,

AccessControlEnumerable .

Some of those contracts do not implement a storage gap:

HasProxyAdmin ;

GatewayV2 ;

MinimumWithdrawal ;

AccessControlEnumerable ;

WithdrawalLimitation .

Because of this, if the logical contract is upgraded to a new version, and if variables are added in the

dependencies, storage conflict could occur in the proxyfiable contracts, causing negative consequences

over the functioning of the VolumeWars contract.

Recommendation

The logic contracts need to implement a storage gap, as per OpenZeppelin recommendation:

uint256uint256[[5050]] privateprivate ______gap ______gap;;

For AccessControlEnumerable , an upgradeable version from OpenZeppelin is available.

Alleviation

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654668180562
https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/AccessControlUpgradeable.sol

[Ronin]:

The team partially resolved this issue by adding a storage gap in the contracts GatewayV2 ,

MinimumWithdrawal and WithdrawalLimitation in the PR 23. For HasProxyAdmin and

AccessControlEnumerable contracts, the team won't make any change for the current version.

Axie Infinity - Audit Security Assessment

https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/23/commits/431406749aa480fe427b8d163788a77e685db2ac

GLOBAL-04 | No Delay In Governance Tasks

Category Severity Location Status

Logical Issue Major Acknowledged

Description

According to the documentation, Governors are users, and those users will act by providing signatures

when interacting with GovernanceAdmin contract.

Considering the users' behavior is unpredictable, it is recommended to introduce a certain time of delay

when performing governance actions.

For example, in the case that the private keys of multiple governors are compromised, attackers could

immediately perform the following actions to execute malicious proposals:

1. Create a Malicious Propocal (or Global Proposal),

2. Cast the Vote,

3. Execute a Malicious proposal.

This could have detrimental consequences over Ronin bridge.

Recommendation

It is recommended to introduce delays in Governance actions, so the bridge cannot be compromised in a

matter of a very short period of time if Governance accounts were to be compromised. Also, it gives the

time for the Ronin Network team to perform responses (e.g., pausing the main functionality) before

executing malicious proposals.

Alleviation

[Ronin] :

Currently, we are asking the validators to store the governor account in a hardware wallets so it helps

minimize the risk of getting compromised.

To fully mitigate this issue we will need to carefully design the strategy when the abnormal events happen,

which would take too much time right now. We decided to leave it open for future upgrade of the system.

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655733211550
https://github.com/axieinfinity/ronin-smart-contracts-v2

GLOBAL-05 | Unlocked Pragma

Category Severity Location Status

Language Specific Informational Acknowledged

Description

Contracts should be deployed using the same compiler version/flags with which they have been tested.

Locking the pragma (e.g. by not using ^ in pragma solidity 0.8.0) ensures that contracts do not accidentally

get deployed using an older compiler version with unfixed bugs.

Reference: [SWC-103] https://swcregistry.io/docs/SWC-103

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can be

compiled at. For example, for version v0.8.0 the contract should contain the following line:

pragma solidity 0.8.0;pragma solidity 0.8.0;

Alleviation

[Ronin]:

The team acknowledged this issue and decided not to change the current codebase.

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655730224013
https://swcregistry.io/docs/SWC-103

CKP-01 | Potential Lack Of Liquidity

Category Severity Location Status

Logical

Issue
Medium

library/Token.sol (audit): 145~177; mainchain/MainchainGatewayV2.sol

(audit): 148~151, 298; ronin/RoninGatewayV2.sol (audit): 325
Partially Resolved

Description

Both the MainchainGatewayV2 and RoninGatewayV2 contracts, upon Deposits and Withdrawals, use the

handleAssetTransfer() to forward the funds to the final user.

The transfers might fail if there is not enough tokens in the contract. For instance, if there is not enough

_wrappedNativeToken in the contract, the transaction will revert in the transfer() function:

111111 functionfunction transfertransfer((

112112 Info Info memorymemory _info _info,,

113113 addressaddress _to _to,,

114114 addressaddress _token _token

115115)) internalinternal {{

116116 boolbool _success _success;;

117117 ifif ((_info_info..erc erc ==== Standard Standard..ERC20ERC20)) {{

118118 _success _success == tryTransferERC20tryTransferERC20((_token_token,, _to _to,, _info _info..quantityquantity));;

119119 }} elseelse ifif ((_info_info..erc erc ==== Standard Standard..ERC721ERC721)) {{

120120 _success _success == tryTransferERC721tryTransferERC721((_token_token,, _to _to,, _info _info..idid));;

121121 }}

122122

123123 ifif ((!!_success_success)) {{

124124 revertrevert((

125125 stringstring((

126126 abi abi..encodePackedencodePacked((

127127 "Token: could not transfer ""Token: could not transfer ",,

128128 toStringtoString((_info_info)),,

129129 " to "" to ",,

130130 Strings Strings..toHexStringtoHexString((uint160uint160((_to_to)),, 2020)),,

131131 " token "" token ",,

132132 Strings Strings..toHexStringtoHexString((uint160uint160((_token_token)),, 2020))

133133))

134134))

135135));;

136136 }}

137137 }}

However, no event is emitted, so the Ronin network might not be alerted of this problem.

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655100893781

Additionally, if the submitWithdrawal() function on the Mainchain side reverted, there is no function on the

Ronin Chain side to withdraw the locked funds in the Ronin Gateway contract. Therefore, the user might

lose their funds forever.

Recommendation

The auditors would like to know how this edge case is dealt with by Ronin.

Alleviation

[Ronin]:

If there is not enough liquidity there is a bigger issue going on, and we will need to address it via

governance process (e.g. Upgrade contracts, calling for signatures to withdraw the remaining tokens in the

bridge).

Axie Infinity - Audit Security Assessment

CKP-02 | _minimumVoteWeight() Can Be Set To A Low Value

Category Severity Location Status

Logical

Issue
Minor

common/RoninValidator.sol (audit): 183~194; extensions/GatewayV2.sol

(audit): 96~107
Partially Resolved

Description

When a withdrawal or a deposit operation is submitted, validators agree to validate an operation. For

example, in _submitWithdrawal() function, when enough validators have validated the operation with their

signatures, tokens are sent to users.

File MainchainGatewayV2

278278 ((......))

279279 _weight _weight +=+= _validatorContract _validatorContract..getValidatorWeightgetValidatorWeight((_signer_signer));;

280280 ifif ((_weight _weight >=>= _minimumVoteWeight _minimumVoteWeight)) {{

281281 _passed _passed == truetrue;;

282282 breakbreak;;

283283 }}

284284 }}

285285 requirerequire((_passed_passed,, "MainchainGatewayV2: query for insufficient vote weight""MainchainGatewayV2: query for insufficient vote weight"));;

286286 withdrawalHash withdrawalHash[[_id_id]] == _receiptHash _receiptHash;;

287287 }}

288288 ((......))

289289 _recordWithdrawal_recordWithdrawal((_tokenAddr_tokenAddr,, _quantity _quantity));;

290290 _receipt _receipt..infoinfo..handleAssetTransferhandleAssetTransfer((payablepayable((_receipt_receipt..mainchainmainchain..addraddr)),, _tokenAddr _tokenAddr,,

wrappedNativeTokenwrappedNativeToken));;

291291 emitemit WithdrewWithdrew((_receiptHash_receiptHash,, _receipt _receipt));;

This is intended in order to ensure that multiple validators vote on the same proposal, and one validator

should usually not be able to pass a vote on his own.

The _minimumVoteWeight mentioned above is computed as follows:

((......))

 functionfunction _computeMinVoteWeight_computeMinVoteWeight((

 Token Token..Standard _ercStandard _erc,,

 addressaddress _token _token,,

 uint256uint256 _quantity _quantity,,

 IWeightedValidator _validatorContract IWeightedValidator _validatorContract

)) internalinternal virtual virtual returnsreturns ((uint256uint256 _weight _weight,, boolbool _locked _locked)) {{

 uint256uint256 _totalWeights _totalWeights == _validatorContract _validatorContract..totalWeightstotalWeights(());;

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654519764804

 _weight _weight == _minimumVoteWeight_minimumVoteWeight((_totalWeights_totalWeights));;

((......))

The _weight is computed as follows:

164164 functionfunction _minimumVoteWeight_minimumVoteWeight((uint256uint256 _totalWeight _totalWeight)) internalinternal viewview virtual virtual returnsreturns

((uint256uint256)) {{

165165 returnreturn ((_num _num ** _totalWeight _totalWeight ++ _denom _denom -- 11)) // _denom _denom;;

166166 }}

However, when _num and _denom are configured, the only restriction is :

188188 functionfunction _setThreshold_setThreshold((uint256uint256 _numerator _numerator,, uint256uint256 _denominator _denominator))

189189 internalinternal

190190 virtual virtual

191191 returnsreturns ((uint256uint256 _previousNum _previousNum,, uint256uint256 _previousDenom _previousDenom))

192192 {{

193193 requirerequire((_numerator _numerator <=<= _denominator _denominator,, "GatewayV2: invalid threshold""GatewayV2: invalid threshold"));;

_denom can be very large compared to _num . To take a concrete example, imagine that:

9 validators exist,

Each validator has a weight of 100 (_totalWeights = 900),

_num is 1,

_denom is 1*10e18.

This kind of configuration would put minimumVoteWeight() to:

This means that any validator could validate any proposal.

The value 1 has been validated with the following PoC:

// SPDX-License-Identifier: MIT// SPDX-License-Identifier: MIT

pragmapragma soliditysolidity ^̂0.8.00.8.0;;

contractcontract numDenomnumDenom {{

 uint256uint256 publicpublic _num _num;;

 uint256uint256 publicpublic _denom _denom;;

 uint256uint256 publicpublic _totalWeights _totalWeights;;

Axie Infinity - Audit Security Assessment

minimumV oteWeight() = (_num ∗ _totalWeights+ _denom− 1)/_denom

minimumV oteWeight() = (900 + 1 ∗ 10e18)/(1 ∗ 10e18)

minimumV oteWeight() = 1

 constructorconstructor(()){{

 _denom _denom == 11 ether ether;;

 _num _num==11;;

 _totalWeights _totalWeights==900900;;

 }}

 functionfunction _minimumVoteWeight_minimumVoteWeight(()) publicpublic viewview virtual virtual returnsreturns ((uint256uint256)) {{

 returnreturn ((_num _num ** _totalWeights _totalWeights ++ _denom _denom -- 11)) // _denom _denom;;

 }}

}}

Recommendation

It is recommended to add further validation upon _denom and _num to avoid any situation where a validator

could pass a proposal by itself.

Alleviation

[Ronin]:

Any changes in the vote weight requirements will need to go through the voting process, so the risk is

minimized.

Axie Infinity - Audit Security Assessment

CKP-03 | Incompatibility With Deflationary Tokens

Category Severity Location Status

Volatile

Code
Minor

mainchain/MainchainGatewayV2.sol (audit): 326; ronin/RoninGatewayV2.s

ol (audit): 359
Acknowledged

Description

When transferring standard ERC20 deflationary tokens, the input amount may not be equal to the received

amount due to the charged transaction fee. As a result, an inconsistency in the amount will occur and the

transaction may fail due to the validation checks.

For example, if a user deposit deflationary tokens (with a 10% transaction fee) into mainchain gateway

contract, only 90 tokens actually arrive in the contract. However, the user can still withdraw 100 tokens

(before fees) from the contract of the ronin side, which causes a lose 10 tokens in such a transaction.

Reference: https://thoreum-finance.medium.com/what-exploit-happened-today-for-gocerberus-and-garuda-

also-for-lokum-ybear-piggy-caramelswap-3943ee23a39f

Recommendation

We advise the client to add necessary mitigation mechanisms to keep track of accurate balances if there is

a need to support deflationary tokens.

Alleviation

[Ronin]:

The team acknowledged this issue and decided not to change the current codebase.

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655645494672
https://thoreum-finance.medium.com/what-exploit-happened-today-for-gocerberus-and-garuda-also-for-lokum-ybear-piggy-caramelswap-3943ee23a39f

GAC-01 | Relayers Can Execute Any Proposal In A Certain Condition

Category Severity Location Status

Logical Issue Medium common/GovernanceAdmin.sol (audit) Resolved

Description

A Relayer can relay a proposal (creation of proposal and forward of signatures) on a specific chain. By

calling relayProposal() , relayers can :

1. Create the proposal, coming from another chain;

2. Cast a vote for the proposal, by passing signed messages from validators; If the vote is passed and

marked as executable, a call() will be performed.

The issue is that, if _minimumForVoteWeight is set to 0, relayers might be able to pass proposal with a fake

signature, because _totalForVoteWeight (0) would be equal to _minimumForVoteWeight (0):

348348 uint256uint256 _minimumForVoteWeight _minimumForVoteWeight == _getMinimumVoteWeight_getMinimumVoteWeight(());;

349349 uint256uint256 _totalForVoteWeight _totalForVoteWeight == _getWeights_getWeights((_forVoteSigners_forVoteSigners));;

350350 ifif ((_totalForVoteWeight _totalForVoteWeight >=>= _minimumForVoteWeight _minimumForVoteWeight)) {{

351351 _vote _vote..status status == VoteStatus VoteStatus..ApprovedApproved;;

352352 ((......))

353353 _proposal _proposal..executeexecute(());;

To abuse this behavior, a malicious relayer could :

1. Create a malicious proposal, marking it as executable ;

2. Sign a vote for this proposal with his own address;

3. Call relayProposal() to execute his proposal.

Recommendation

It is recommended to add a check that :

_totalForVoteWeight is > 0;

_totalAgainstVoteWeight is > 0;

This kind of check is already performed in the function _castVotesBySignatures() :

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655468848333

284284 uint256uint256 _weight _weight == _getWeight_getWeight((_signer_signer));;

285285 ifif ((_weight _weight >> 00)) {{

Alleviation

[Ronin]:

The team resolved this issue by adding the missing checks, in the PR 23.

Axie Infinity - Audit Security Assessment

https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/23/commits/431406749aa480fe427b8d163788a77e685db2ac

GAC-02 | No Check That Address Is An Actual Contract

Category Severity Location Status

Logical Issue Minor common/GovernanceAdmin.sol (audit): 311~312, 322 Resolved

Description

The _setValidatorContract() and _setGatewayContract() modify the value of contracts addresses, but

do not validate if those addresses are valid contracts. Administrators could, by mistake, put an address not

related to a contract.

Recommendation

It is recommended to perform checks to ensure that the modified variables correspond to contract. This

could be done through the following check:

modifiermodifier isContractisContract(()) {{

 requirerequire((((_isContract_isContract((msgmsg..sendersender)))),, "only contracts are allowed""only contracts are allowed"));;

 __;;

}}

functionfunction _isContract_isContract((addressaddress addr addr)) internalinternal viewview returnsreturns ((boolbool)) {{

 uint256uint256 size size;;

 assemblyassembly {{

 size size :=:= extcodesizeextcodesize((addraddr))

 }}

 returnreturn size size >> 00;;

}}

Alleviation

[Ronin]:

The team resolved this issue by adding a verification on the code.length , in the PR 23.

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654256448167
https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/23/commits/431406749aa480fe427b8d163788a77e685db2ac

GCK-01 | Inconsistency With Comments

Category Severity Location Status

Logical Issue Informational extensions/governance/Governance.sol (audit): 252 Resolved

Description

The comment in the Governancecontract, for the _castVotesBySignatures() function, states:

** @notice This method does not verify the proposal hash with the vote hash @notice This method does not verify the proposal hash with the vote hash.. Please Please

consider checking it beforeconsider checking it before..

When looking at the 4 functions calling _castVotesBySignatures() , 2 of them do not seem to perform the

check:

_castGlobalProposalBySignatures() : OK;

`_castProposalBySignatures() : OK;

_proposeGlobalProposalStructAndCastVotes() : KO;

_proposeProposalStructAndCastVotes() : KO.

Recommendation

The auditors would like to know if there is a reason for this difference of behavior. If so, it might be

opportune to modify the aforementioned comment.

Alleviation

[Ronin]:

The team acknowledged this is by design. The first two functions vote for existing proposals so they need to

check the hash to make sure. The last two functions create a new proposal and cast the vote right away by

the creator so you don't need to check the hash.

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655817730267

MGV-01 | Validators Could Be Too Powerful

Category Severity Location Status

Logical Issue Medium mainchain/MainchainGatewayV2.sol (audit): 122 Acknowledged

Description

The function submitWithdrawal() verifies the signatures from validators. When all signatures are verified

and when the threshold is met, assets will be transferred to the user specified in the _receipt parameter.

122122 functionfunction submitWithdrawalsubmitWithdrawal((TransferTransfer..Receipt Receipt calldatacalldata _receipt _receipt,, Signature Signature[[]] calldatacalldata

_signatures_signatures))

123123 externalexternal

124124 virtual virtual

125125 whenNotPaused whenNotPaused

126126 returnsreturns ((boolbool _locked _locked))

127127 {{

128128 returnreturn _submitWithdrawal_submitWithdrawal((_receipt_receipt,, _signatures _signatures));;

129129 }}

The concern is, if the attacker exploited the private keys of the validators, the attacker can spoof the

receipt and signatures, thus stealing the funds within the contract.

As the validator's logic is unknown, we propose a potential workaround to add a restriction on the caller of

submitWithdrawal() and separate the caller with validators. The caller could be a server that calls

submitWithdrawal() after having received the deposit events (DepositRequested).

In this way, by adding another layer of verification, even if the validators' private keys are compromised, the

attacker cannot steal funds because the attacker needs to spoof a deposit event on the other chain.

Recommendation

The above proposal serves as a discussion purpose. We would also like to learn about how the Ronin

network ensures the validators' private keys are safe.

Alleviation

[Ronin]:

The team agreed with this suggestion, and will work on it in a later stage.

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655688809780

MGV-02 | Using Of Default Value

Category Severity Location Status

Logical Issue Informational mainchain/MainchainGatewayV2.sol (audit): 397 Acknowledged

Description

When request a deposit with a fallback function, the info varaible was filled with default values, meaning

info.erc is ERC20 and info.id is 0.

 functionfunction _fallback_fallback(()) internalinternal virtual whenNotPaused virtual whenNotPaused {{

 ifif ((msgmsg..sender sender !=!= addressaddress((wrappedNativeTokenwrappedNativeToken)))) {{

 Transfer Transfer..Request Request memorymemory _request _request;;

 _request _request..recipientAddr recipientAddr == msg msg..sendersender;;

 _request _request..infoinfo..quantity quantity == msg msg..valuevalue;;

 _requestDepositFor_requestDepositFor((_request_request,, _request _request..recipientAddrrecipientAddr));;

 }}

 }}

Recommendation

Consider upgradeable feature of the project, we recommend explicitly assign values to those varaibles

instead of using the default value.

Alleviation

[Ronin]:

The team acknowledged this issue and decided not to change the current codebase.

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655696587545

TCK-01 | Potential Re-entrancy On handleAssetTransfer()

Category Severity Location Status

Logical Issue Informational library/Token.sol (audit): 159~165 Acknowledged

Description

In the handleAssetTransfer() function of the Token contract, if the _token is a Token.Standard.ERC20 ,

the flow is as following to send the tokens:

}} elseelse ifif ((_info_info..erc erc ==== Token Token..StandardStandard..ERC20ERC20)) {{

uint256uint256 _balance _balance == IERC20IERC20((_token_token))..balanceOfbalanceOf((addressaddress((thisthis))));;

ifif ((_balance _balance << _info _info..quantityquantity)) {{

 // bytes4(keccak256("mint(address,uint256)"))// bytes4(keccak256("mint(address,uint256)"))

 ((_success_success,,)) == _token _token..callcall((abiabi..encodeWithSelectorencodeWithSelector((0x40c10f190x40c10f19,, addressaddress((thisthis)),,

_info_info..quantity quantity -- _balance _balance))));;

 requirerequire((_success_success,, "Token: ERC20 minting failed""Token: ERC20 minting failed"));;

}}

transfertransfer((_info_info,, _to _to,, _token _token));;

After analysis, it does not seem that a practical scenario is possible, in which Ronin Network funds would be

at risk. The scenario below intends to describe where the issue lies.

In the hypothetical case that _token is a proxified and valuable ERC20 token controlled by an attacker, a

re-entrancy could occur by abusing the balanceOf() function.

The flow is as following :

1. Attacker modifies the implementation of _token to modify the balanceOf() function, to call

handleAssetTransfer() .

2. Attacker calls handleAssetTransfer() ;

3. When the contract will call IERC20(_token).balanceOf(address(this)) , the call will go to

handleAssetTransfer() , performing the re-entrancy.

It is after the re-entrancy that the transfer() call is actually performed to send the tokens, making the

attack possible.

Recommendation

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654256775362

It is recommended to apply OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the

handleAssetTransfer() function, to prevent reentrancy attack.

Alleviation

[Ronin]:

The team acknowledged this issue and decided not to change the current codebase.

Axie Infinity - Audit Security Assessment

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

TCK-02 | Completion Of If-else Branch

Category Severity Location Status

Volatile Code Informational library/Token.sol (audit): 58~64, 117~121 Resolved

Description

The Token library invokes the token transfers (via transferFrom() and transfer()). Those functions first

check the token's type with an if-else branch. For example,

5858 ifif ((_info_info..erc erc ==== Standard Standard..ERC20ERC20)) {{

5959 ((_success_success,, _data _data)) ==

_token_token..callcall((abiabi..encodeWithSelectorencodeWithSelector((IERC20IERC20..transferFromtransferFrom..selectorselector,, _from _from,, _to _to,,

_info_info..quantityquantity))));;

6060 _success _success == _success _success &&&& ((_data_data..length length ==== 00 |||| abi abi..decodedecode((_data_data,, ((boolbool))))));;

6161 }} elseelse ifif ((_info_info..erc erc ==== Standard Standard..ERC721ERC721)) {{

6262 // bytes4(keccak256("transferFrom(address,address,uint256)"))// bytes4(keccak256("transferFrom(address,address,uint256)"))

6363 ((_success_success,,)) == _token _token..callcall((abiabi..encodeWithSelectorencodeWithSelector((0x23b872dd0x23b872dd,, _from _from,, _to _to,,

_info_info..idid))));;

6464 }}

The above if-else branch is not completed, meaning it lacks an else branch to cover all the other

situations. Since the current Standard enum only has two types, it will not cause any actual issue.

1010 enumenum StandardStandard {{

1111 ERC20 ERC20,,

1212 ERC721 ERC721

1313 }}

However, considering the upgradeable feature of the contract, if the library supports more types of tokens, it

could lead to potential risk.

Recommendation

We recommend adding an else branch to cover all the possible situations. For example,

 ifif ((_info_info..erc erc ==== Standard Standard..ERC20ERC20)) {{

 }} elseelse ifif ((_info_info..erc erc ==== Standard Standard..ERC721ERC721)) {{

 }} elseelse {{

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655692771768

 revertrevert(("Token: unsupported token standard""Token: unsupported token standard"));;

 }}

Alleviation

[Ronin]:

The team resolved this issue by adding a else branch in the PR 23.

Axie Infinity - Audit Security Assessment

https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/23/commits/431406749aa480fe427b8d163788a77e685db2ac

TUP-01 | Design Violation

Category Severity Location Status

Inconsistency Informational extensions/TransparentUpgradeableProxyV2.sol (audit): 24~37 Acknowledged

Description

The TransparentUpgradeableProxy is designed as follows:

When users call the proxy, calls are forwarded to the implementation contract with delegatecall ;

When an admin calls the proxy, the call is executed on the proxy contract.

This design is meant to prevent Proxy selector clashing attacks.

The TransparentUpgradeableProxyV2 contract implemented by Ronin violates this design, by allowing

administrators to call the implementation contract, with the addition of the functionDelegateCall()

function.

Recommendation

The auditors would like to understand the reason of this choice.

Alleviation

[Ronin]:

We use the TransparentUpgradeableProxy to mainly avoid selector clashing issues, which can cause

unexpected behavior for the Bridge.

In the Ronin Bridge context, we set the Governance Admin contract (GA) as the ProxyAdmin of the

Validator contract and the Gateway contract (which implements the TransparentUpgradeableProxy

behind). These contracts only allow the GA contract to modify some critical states.

But the TransparentUpgradeableProxy ProxyAdmin is not allowed the to call any methods in the

implementation contract; so we introduce the TransparentUpgradeableProxyV2 that allows the

ProxyAdmin to do it by explicitly calling the functionDelegateCall function.

Thanks to this function, the GA contract can call to Ronin Validator contract to retrieve governor addresses,

and get/set thresholds despite it being the proxy admin.

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654255285861
https://medium.com/nomic-foundation-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357

WLC-01 | Inappropriate Upper Limits For Fees

Category Severity Location Status

Logical Issue Minor extensions/WithdrawalLimitation.sol (audit): 154 Acknowledged

Description

The fee is calculated via the function _computeFeePercentage() :

220220 functionfunction _computeFeePercentage_computeFeePercentage((uint256uint256 _amount _amount,, uint256uint256 _percentage _percentage)) internalinternal viewview

virtual virtual returnsreturns ((uint256uint256)) {{

221221 returnreturn ((_amount _amount ** _percentage _percentage)) // _MAX_PERCENTAGE _MAX_PERCENTAGE;;

222222 }}

The percentage of the fee is set via function _setUnlockFeePercentages() . However, when setting the fee

percentage, the fee percentage can be set as _MAX_PERCENTAGE , meaning all the transferred asset will be

collected as fee.

151151 functionfunction _setUnlockFeePercentages_setUnlockFeePercentages((addressaddress[[]] calldatacalldata _tokens _tokens,, uint256uint256[[]] calldatacalldata

_percentages_percentages)) internalinternal virtual virtual {{

152152 requirerequire((_tokens_tokens..length length ==== _percentages _percentages..lengthlength,, "WithdrawalLimitation: invalid"WithdrawalLimitation: invalid

array length"array length"));;

153153 forfor ((uint256uint256 _i _i;; _i _i << _tokens _tokens..lengthlength;; _i _i++++)) {{

154154 requirerequire((_percentages_percentages[[_i_i]] <=<= _MAX_PERCENTAGE _MAX_PERCENTAGE,, "WithdrawalLimitation: invalid"WithdrawalLimitation: invalid

percentage"percentage"));;

155155 unlockFeePercentages unlockFeePercentages[[_tokens_tokens[[_i_i]]]] == _percentages _percentages[[_i_i]];;

156156 }}

157157 emitemit UnlockFeePercentagesUpdatedUnlockFeePercentagesUpdated((_tokens_tokens,, _percentages _percentages));;

158158 }}

Recommendation

It is recommended to set a more appropriate limit the fee when calling _setUnlockFeePercentages() .

Alleviation

[Ronin]:

The team acknowledged this issue and decided not to change the current codebase.

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1655651482301

WLK-01 | Questions About Tiers Model

Category Severity Location Status

Inconsistency Informational extensions/WithdrawalLimitation.sol (PR21): 250~256 Acknowledged

Description

The auditors do not see how the Tiers model is implemented through the code, especially :

Tiers 2: All signatures from validators are required;

Tiers 3: All signatures from validators are required, one additional human review to unlock the fund

The documentation states: "There will be another constraint on the number of token that can be withdraw in

a day. We propose to cap the value at $50M. Since withdrawal of Tier 3 already requires human review, it

will not be counted in daily withdrawal limit.".

However, within the _setDailyWithdrawalLimits() function, there is no validation that this limit cannot be

pushed beyond 50M:

250250 functionfunction _setDailyWithdrawalLimits_setDailyWithdrawalLimits((addressaddress[[]] calldatacalldata _tokens _tokens,, uint256uint256[[]] calldatacalldata

_limits_limits)) internalinternal virtual virtual {{

251251 requirerequire((_tokens_tokens..length length ==== _limits _limits..lengthlength,, "WithdrawalLimitation: invalid array"WithdrawalLimitation: invalid array

length"length"));;

252252 forfor ((uint256uint256 _i _i;; _i _i << _tokens _tokens..lengthlength;; _i _i++++)) {{

253253 dailyWithdrawalLimit dailyWithdrawalLimit[[_tokens_tokens[[_i_i]]]] == _limits _limits[[_i_i]];;

254254 }}

255255 emitemit DailyWithdrawalLimitsUpdatedDailyWithdrawalLimitsUpdated((_tokens_tokens,, _limits _limits));;

256256 }}

Recommendation

The auditors would like to have more information about how the Tiers model is implemented through the

code.

Alleviation

[Ronin]:

The limit is not fixed yet, it is still an on-going discussion and can be changed via voting. Also the limit is just

another layer of risk management. We don't know the perfect numbers for the limits yet so, we will need to

roll it out and measure it.

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654237868011

Optimizations

ID Title Category Severity Status

BMC-01 Variables That Could Be Declared As Immutable Gas Optimization Optimization Resolved

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654237326506

BMC-01 | Variables That Could Be Declared As Immutable

Category Severity Location Status

Gas Optimization Optimization migration/BridgeMigration.sol (audit): 32 Resolved

Description

The linked variables weth assigned in the constructor can be declared as immutable . Immutable state

variables can be assigned during contract creation but will remain constant throughout the lifetime of a

deployed contract. A big advantage of immutable variables is that reading them is significantly cheaper than

reading from regular state variables since they will not be stored in storage.

Recommendation

It is recommended to declare these variables as immutable.

Alleviation

[Ronin]:

The team resolved this issue by setting the variables as ìmmutable in the PR 22.

Axie Infinity - Audit Security Assessment

https://accelerator.audit.certikpowered.info/project/e4b678b0-d85b-11ec-a4ae-0d0f12a37b03/report?fid=1654237326506
https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/22/commits/8e13e0bc4aac7ccb23ce6cb8fe5199f158e61dfa

Appendix

SCSVSv2 Checks

CertiK used the SCSVSv2 referential to perform additional testing on Ronin bridge.

C6.1 - Verify that bridge requires all necessary values to be included in the message

and signed: chain ids, receiver, amount, nonce.

In MainchainGatewayV2 , the function _submitWithdrawal() uses a receipt:

 structstruct ReceiptReceipt {{

 uint256uint256 id id;; //nonce//nonce

 Kind kind Kind kind;;

 Token Token..Owner mainchainOwner mainchain;;

 Token Token..Owner roninOwner ronin;;

 Token Token..Info infoInfo info;;

 }}

With:

 structstruct InfoInfo {{

 Standard erc Standard erc;;

 // For ERC20: the id must be 0 and the quantity is larger than 0.// For ERC20: the id must be 0 and the quantity is larger than 0.

 // For ERC721: the quantity must be 0.// For ERC721: the quantity must be 0.

 uint256uint256 id id;;

 uint256uint256 quantity quantity;; //Quantity//Quantity

 }}

 structstruct OwnerOwner {{

 addressaddress addr addr;; //Destination//Destination

 addressaddress tokenAddr tokenAddr;;

 uint256uint256 chainId chainId;; //chainId//chainId

 }}

In RoninGatewayV2 , the function _depositFor() also uses a receipt:

 structstruct ReceiptReceipt {{

 uint256uint256 id id;; //nonce//nonce

 Kind kind Kind kind;;

 Token Token..Owner mainchainOwner mainchain;;

 Token Token..Owner roninOwner ronin;; //chainId//chainId

Axie Infinity - Audit Security Assessment

https://github.com/securing/SCSVS/blob/prerelease/SCSVSv2/2.0/0x200-Components/0x206-C6-Bridge.md

 Token Token..Info infoInfo info;;

 }}

With:

 structstruct InfoInfo {{

 Standard erc Standard erc;;

 // For ERC20: the id must be 0 and the quantity is larger than 0.// For ERC20: the id must be 0 and the quantity is larger than 0.

 // For ERC721: the quantity must be 0.// For ERC721: the quantity must be 0.

 uint256uint256 id id;;

 uint256uint256 quantity quantity;; //Quantity//Quantity

 }}

 structstruct OwnerOwner {{

 addressaddress addr addr;; //Destination//Destination

 addressaddress tokenAddr tokenAddr;;

 uint256uint256 chainId chainId;; //chainId//chainId

 }}

Those elements appear to be in compliance with C6.1.

C6.2 - Verify that used signatures are invalidated to protect bridge from replay attacks.

Example _depositFor() - Ronin

What happens when tokens are bridged is that a proposal ReceiptVote (depositVote[.chainId][_id]) is

created :

 structstruct ReceiptVoteReceiptVote {{

 VoteStatus status VoteStatus status;; // Goes from Pending to Executed when funds are sent// Goes from Pending to Executed when funds are sent

 bytes32bytes32 finalHash finalHash;;

 /// @dev Mapping from voter => receipt hash/// @dev Mapping from voter => receipt hash

 mappingmapping((addressaddress =>=> bytes32bytes32)) receiptHash receiptHash;;

 /// @dev Mapping from receipt hash => vote weight/// @dev Mapping from receipt hash => vote weight

 mappingmapping((bytes32bytes32 =>=> uint256uint256)) weight weight;;

 }}

Once a vote is passed, funds are sent and vote status is updated to Executed . It is not possible to replay a

proposal because the vote will have been marked as executed:

requirerequire((_vote_vote..status status ==== VoteStatus VoteStatus..PendingPending,, "Governance: the vote is finalized""Governance: the vote is finalized"));;

Example _submitWithdrawal() - Mainchain What happens when tokens are withdrawn is that a receipt

digest is computed.

Axie Infinity - Audit Security Assessment

bytes32bytes32 _receiptDigest _receiptDigest == Transfer Transfer..receiptDigestreceiptDigest((_domainSeparator_domainSeparator,, _receipt _receipt..hashhash(())));;

The function will check that the Ronin validators signed for this particular Digest:

_signer _signer == ecrecoverecrecover((_receiptDigest_receiptDigest,, _sig _sig..vv,, _sig _sig..rr,, _sig _sig..ss));;

((......))

_weight _weight +=+= _validatorContract _validatorContract..getValidatorWeightgetValidatorWeight((_signer_signer));;

As a consequence, it is not possible to forge fake requests because it would mean having access to Ronin

Validators.

In addition, to avoid replay, a check is performed before processing withdrawal:

requirerequire((withdrawalHashwithdrawalHash[[_id_id]] ==== bytes32bytes32((00)),, "MainchainGatewayV2: query for processed"MainchainGatewayV2: query for processed

withdrawal"withdrawal"));;

If withdrawal is successful, the variable is updated:

withdrawalHashwithdrawalHash[[_id_id]] == _receiptHash _receiptHash;;

Those elements appear to be in compliance with C6.2.

C6.3 - Verify that message hash generation algorithm is resistant to collision attacks.

The use of keccak256() function is OK as of today June 20th, 2022.

C6.4 - Verify that bridge includes source and destination chains identifiers in the signed

message and correctly verifies them.

The verification is performed upon withdrawals:

 functionfunction _submitWithdrawal_submitWithdrawal((TransferTransfer..Receipt Receipt calldatacalldata _receipt _receipt,, Signature Signature[[]] memorymemory

_signatures_signatures))

((......))

requirerequire((_receipt_receipt..mainchainmainchain..chainId chainId ==== block block..chainidchainid,, "MainchainGatewayV2: invalid chain"MainchainGatewayV2: invalid chain

id"id"));;

The verification is also performed upon deposits:

Axie Infinity - Audit Security Assessment

 functionfunction _depositFor_depositFor((TransferTransfer..Receipt Receipt memorymemory _receipt _receipt,,addressaddress _validator _validator,,uint256uint256

_weight_weight,,uint256uint256 _minVoteWeight _minVoteWeight)) internalinternal {{

((......))

 requirerequire((_receipt_receipt..roninronin..chainId chainId ==== block block..chainidchainid,, "RoninGatewayV2: invalid chain id""RoninGatewayV2: invalid chain id"));;

Those elements appear to be in compliance with C6.4.

C6.5 - Verify that bridge does not allow to spoof chain identifier.

Because of the verification performed previously in C6.4, it is not possible to spoof chain identifier.

C6.6 - Verify that bridge uses a nonce parameter to allow the same operation (the same

sender, receiver and amount) to be executed multiple times.

A nonce is used for deposits (depositCount) :

 uint256uint256 _depositId _depositId == depositCount depositCount++++;;

 Transfer Transfer..Receipt Receipt memorymemory _receipt _receipt == _request _request..into_deposit_receiptinto_deposit_receipt((

 _requester _requester,,

 _depositId _depositId,,

 _token _token..tokenAddrtokenAddr,,

 roninChainId roninChainId

));;

A nonce is used for withdrawals (withdrawalCount) :

 uint256uint256 _withdrawalId _withdrawalId == withdrawalCount withdrawalCount++++;;

 Transfer Transfer..Receipt Receipt memorymemory _receipt _receipt == _request _request..into_withdrawal_receiptinto_withdrawal_receipt((

 _requester _requester,,

 _withdrawalId _withdrawalId,,

 _mainchainTokenAddr _mainchainTokenAddr,,

 _chainId _chainId

));;

Those elements appear to be in compliance with C6.6.

C6.7 - Verify signed message cannot be used in a different context (use domain

separator from EIP-712).

Because of the reasons mentioned in C6.2, contracts appear to be in compliance with C6.6. Also,

MainchainGateway contract uses DOMAIN SEPARATOR from EIP-712.

Example - For withdrawals from Ronin to other chains, Domain separator is used

Axie Infinity - Audit Security Assessment

bytes32bytes32 _receiptDigest _receiptDigest == Transfer Transfer..receiptDigestreceiptDigest((_domainSeparator_domainSeparator,, _receiptHash _receiptHash));;

This Domain Separator is unique for each chainId :

function _updateDomainSeparator() internal { _domainSeparator = keccak256(function _updateDomainSeparator() internal { _domainSeparator = keccak256(

 abi.encode(abi.encode(

 keccak256("EIP712Domain(string name,string version,uint256 chainId,address keccak256("EIP712Domain(string name,string version,uint256 chainId,address

verifyingContract)"),verifyingContract)"),

 keccak256("MainchainGatewayV2"), keccak256("MainchainGatewayV2"),

 keccak256("2"), keccak256("2"),

 block.chainid, block.chainid,

 address(this) address(this)

))

););

 } }

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in combination

with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Language Specific

Axie Infinity - Audit Security Assessment

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code,

such as a constructor assignment imposing different require statements on the input variables than a setter

function.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under the

specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Axie Infinity - Audit Security Assessment

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,

condentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by

the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This

report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes, nor

may copies be delivered to any other person other than the Company, without CertiK’s prior written consent

in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any “product”

or “asset” created by any team or project that contracts CertiK to perform a security assessment. This report

does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors, business, business model or

legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and

blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that

each company and individual are responsible for their own due diligence and continuous security. CertiK’s

goal is to help reduce the attack vectors and the high level of variance associated with utilizing new and

consistently changing technologies, and in no way claims any guarantee of security or functionality of the

technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development.

You agree that your access and/or use, including but not limited to any services, reports, and materials, will

be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens are emergent

technologies and carry with them high levels of technical risk and uncertainty. The assessment reports could

include false positives, false negatives, and other unpredictable results. The services may access, and

depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER

MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND

Axie Infinity - Audit Security Assessment

“AS AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO

THE MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO

THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE

FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND

ALL WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT

LIMITING THE FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES,

THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER

PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH

ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE

OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK

PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND

THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS

OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY

STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES

ANY REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE

ACCURACY, RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED

THROUGH THE SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY

ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR

DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY

PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM

CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER

MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED

TO, ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

Axie Infinity - Audit Security Assessment

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY

OR OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES

OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT

REPORTS OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF

FINANCIAL, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Axie Infinity - Audit Security Assessment

About

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and correctness

of smart contracts and blockchain-based protocols. Through the utilization of our world-class technical

expertise, alongside our proprietary, innovative tech, we’re able to support the success of our clients with

best-in-class security, all whilst realizing our overarching vision; provable trust for all throughout all facets of

blockchain.

Axie Infinity - Audit Security Assessment

